Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.232
Filter
1.
BMC Infect Dis ; 24(1): 412, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641583

ABSTRACT

BACKGROUND: Vibrio furnissii is an emerging human pathogen closely related to V. fluvialis that causes acute gastroenteritis. V. furnissii infection has been reported to be rarer than V. fluvialis, but a multi-drug resistance plasmid has recently been discovered in V. furnissii. METHODS: During daily monitoring at a general hospital in Beijing, China, seven V. furnissii strains were collected from patients aged over 14 years who presented with acute diarrhoea between April and October 2018. Genome analysis and comparison were performed for virulence and antimicrobial resistance genes, plasmids and transposon islands, together with phylogenetic analysis. Antimicrobial resistance to 19 antibiotics was investigated using the microbroth dilution method. Virulence phenotypes were investigated based on type VI secretion system (T6SS) expression and using a bacterial killing assay and a haemolysin assay. RESULTS: Phylogenetic analysis based on single-nucleotide polymorphisms revealed a closer relationship between V. furnissii and V. fluvialis than between other Vibrio spp. The seven V. furnissii isolates were in different monophyletic clades in the phylogenetic tree, suggesting that the seven cases of gastroenteritis were independent. High resistance to cefazolin, tetracycline and streptomycin was found in the V. furnissii isolates at respective rates of 100.0%, 57.1% and 42.9%, and intermediate resistance to ampicillin/sulbactam and imipenem was observed at respective rates of 85.7% and 85.7%. Of the tested strains, VFBJ02 was resistant to both imipenem and meropenem, while VFBJ01, VFBJ02, VFBJ05 and VFBJ07 were multi-drug resistant. Transposon islands containing antibiotic resistance genes were found on the multi-drug resistance plasmid in VFBJ05. Such transposon islands also occurred in VFBJ07 but were located on the chromosome. The virulence-related genes T6SS, vfh, hupO, vfp and ilpA were widespread in V. furnissii. The results of the virulence phenotype assays demonstrated that our isolated V. furnissii strains encoded an activated T6SS and grew in large colonies with strong beta-haemolysis on blood agar. CONCLUSION: This study showed that diarrhoea associated with V. furnissii occurred sporadically and was more common than expected in the summer in Beijing, China. The antibiotic resistance of V. furnissii has unique characteristics compared with that of V. fluvialis. Fluoroquinolones and third-generation cephalosporins, such as ceftazidime and doxycycline, were effective at treating V. furnissii infection. Continua laboratory-based surveillance is needed for the prevention and control of V. furnissii infection, especially the dissemination of the antibiotic resistance genes in this pathogen.


Subject(s)
Gastroenteritis , Vibrio , Humans , Aged , Virulence/genetics , Phylogeny , Vibrio/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Diarrhea/microbiology , Imipenem/pharmacology
2.
Biochemistry (Mosc) ; 89(2): 241-256, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38622093

ABSTRACT

Genes of putative reductases of α,ß-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.


Subject(s)
Oxidoreductases , Vibrio , Oxidoreductases/metabolism , NAD/metabolism , Cinnamates , Oxidation-Reduction , Vibrio/genetics , Vibrio/metabolism , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , NADH Dehydrogenase/metabolism , Flavins/chemistry , Transferases , Flavin-Adenine Dinucleotide/metabolism
3.
BMC Vet Res ; 20(1): 129, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561778

ABSTRACT

BACKGROUND: Vibriosis is one of the most serious bacterial diseases and causes high morbidity and mortality among cultured sea breams. This study was undertaken to track the surveillance of Vibrio infection and its correlation to environmental factors. A total of 115 gilthead sea breams were collected seasonally from a private earthen pond fish farm in the Shatta area of Damietta, Egypt from September 2022 to July 2023. Physicochemical parameters of water were analyzed, and heavy metal levels were measured. The fish samples were subjected to clinical, bacteriological, Enterobacterial Repetitive Intergenic Consensus (ERIC) fingerprinting, and hematoxylin and Eosin histopathological staining. RESULTS: The results revealed significant variations in the water quality parameters over different seasons, in addition to an increase in heavy metals. Naturally infected fish showed external signs and postmortem lesions that were relevant to bacterial infection. Two dominant Vibrio subspecies of bacteria were identified: V. alginolyticus (205 isolates) and V. fluvialis (87 isolates). PCR confirmed the presence of V. alginolyticus using the species-specific primer collagenase at 737 bp. The highest prevalence of V. alginolyticus was detected during the summer season (57.72%), and the lowest prevalence was observed in autumn (39.75%). The correlation analysis revealed a positive relationship between V. alginolyticus and water temperature (r = 0.69). On the other hand, V. fluvialis showed a high prevalence during the autumn season (25.30%) and the lowest prevalence during the summer season (10.56%), where it was negatively correlated with water temperatures (r =-0.03). ERIC fingerprinting showed genetic variation within the Vibrio isolates. Antimicrobial susceptibility testing revealed sensitivity to ciprofloxacin and doxycycline, and resistance to amoxicillin and erythromycin. The multiple antibiotic resistance (MAR) index values for V. alginolyticus and V. fluvialis ranged from 0.3 to 0.7, with a multi-drug resistance pattern to at least three antibiotics. Histopathological alterations in the affected tissues revealed marked hemorrhage, vascular congestion, and hemosiderosis infiltration. CONCLUSION: This study provides insights into the potential propagation of waterborne diseases and antibiotic resistance in the environment. Ensuring that the environment does not serve as a reservoir for virulent and contagious Vibrio species is a critical concern for regional aquaculture industries. Therefore, we recommend implementing environmental context-specific monitoring and surveillance tools for microbial resistance.


Subject(s)
Sea Bream , Vibrio Infections , Vibrio , Animals , Sea Bream/microbiology , Prevalence , Egypt/epidemiology , Drug Resistance, Bacterial , Vibrio/genetics , Anti-Bacterial Agents/pharmacology , Vibrio Infections/veterinary , Genetic Variation
4.
Front Cell Infect Microbiol ; 14: 1340910, 2024.
Article in English | MEDLINE | ID: mdl-38606300

ABSTRACT

Vibrios are associated with live seafood because they are part of the indigenous marine microflora. In Asia, foodborne infections caused by Vibrio spp. are common. In recent years, V. parahaemolyticus has become the leading cause of all reported food poisoning outbreaks. Therefore, the halogenated acid and its 33 derivatives were investigated for their antibacterial efficacy against V. parahaemolyticus. The compounds 3,5-diiodo-2-methoxyphenylboronic acid (DIMPBA) and 2-fluoro-5-iodophenylboronic acid (FIPBA) exhibited antibacterial and antibiofilm activity. DIMPBA and FIPBA had minimum inhibitory concentrations of 100 µg/mL for the planktonic cell growth and prevented biofilm formation in a dose-dependent manner. Both iodo-boric acids could diminish the several virulence factors influencing the motility, agglutination of fimbria, hydrophobicity, and indole synthesis. Consequently, these two active halogenated acids hampered the proliferation of the planktonic and biofilm cells. Moreover, these compounds have the potential to effectively inhibit the presence of biofilm formation on the surface of both squid and shrimp models.


Subject(s)
Boronic Acids , Vibrio parahaemolyticus , Vibrio , Biofilms , Virulence Factors/pharmacology , Anti-Bacterial Agents/pharmacology
5.
Commun Biol ; 7(1): 434, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594357

ABSTRACT

Beneficial microorganisms for corals (BMCs), or probiotics, can enhance coral resilience against stressors in laboratory trials. However, the ability of probiotics to restructure the coral microbiome in situ is yet to be determined. As a first step to elucidate this, we inoculated putative probiotic bacteria (pBMCs) on healthy colonies of Pocillopora verrucosa in situ in the Red Sea, three times per week, during 3 months. pBMCs significantly influenced the coral microbiome, while bacteria of the surrounding seawater and sediment remained unchanged. The inoculated genera Halomonas, Pseudoalteromonas, and Bacillus were significantly enriched in probiotic-treated corals. Furthermore, the probiotic treatment also correlated with an increase in other beneficial groups (e.g., Ruegeria and Limosilactobacillus), and a decrease in potential coral pathogens, such as Vibrio. As all corals (treated and non-treated) remained healthy throughout the experiment, we could not track health improvements or protection against stress. Our data indicate that healthy, and therefore stable, coral microbiomes can be restructured in situ, although repeated and continuous inoculations may be required in these cases. Further, our study provides supporting evidence that, at the studied scale, pBMCs have no detectable off-target effects on the surrounding microbiomes of seawater and sediment near inoculated corals.


Subject(s)
Anthozoa , Bacillus , Microbiota , Probiotics , Vibrio , Animals , Anthozoa/microbiology
6.
Environ Monit Assess ; 196(5): 447, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607511

ABSTRACT

Assessing the co-occurrence of multiple health risk factors in coastal ecosystems is challenging due to the complexity of multi-factor interactions and limited availability of simultaneously collected data. Understanding co-occurrence is particularly important for risk factors that may be associated with, or occur in similar environmental conditions. In marine ecosystems, the co-occurrence of harmful algal bloom toxins and bacterial pathogens within the genus Vibrio may impact both ecosystem and human health. This study examined the co-occurrence of Vibrio spp. and domoic acid (DA) produced by the harmful algae Pseudo-nitzschia by (1) analyzing existing California Department of Public Health monitoring data for V. parahaemolyticus and DA in oysters; and (2) conducting a 1-year seasonal monitoring of these risk factors across two Southern California embayments. Existing public health monitoring efforts in the state were robust for individual risk factors; however, it was difficult to evaluate the co-occurrence of these risk factors in oysters due to low number of co-monitoring instances between 2015 and 2020. Seasonal co-monitoring of DA and Vibrio spp. (V. vulnificus or V. parahaemolyticus) at two embayments revealed the co-occurrence of these health risk factors in 35% of sampled oysters in most seasons. Interestingly, both the overall detection frequency and co-occurrence of these risk factors were considerably less frequent in water samples. These findings may in part suggest the slow depuration of Vibrio spp. and DA in oysters as residual levels may be retained. This study expanded our understanding of the simultaneous presence of DA and Vibrio spp. in bivalves and demonstrates the feasibility of co-monitoring different risk factors from the same sample. Individual programs monitoring for different risk factors from the same sample matrix may consider combining efforts to reduce cost, streamline the process, and better understand the prevalence of co-occurring health risk factors.


Subject(s)
Ecosystem , Kainic Acid/analogs & derivatives , Vibrio , Humans , Environmental Monitoring , Data Collection
7.
Sci Rep ; 14(1): 8563, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609487

ABSTRACT

Heavy metal accumulation increases rapidly in the environment due to anthropogenic activities and industrialization. The leather and surgical industry produces many contaminants containing heavy metals. Cadmium, a prominent contaminant, is linked to severe health risks, notably kidney and liver damage, especially among individuals exposed to contaminated wastewater. This study aims to leverage the natural cadmium resistance mechanisms in bacteria for bioaccumulation purposes. The industrial wastewater samples, characterized by an alarming cadmium concentration of 29.6 ppm, 52 ppm, and 76.4 ppm-far exceeding the recommended limit of 0.003 ppm-were subjected to screening for cadmium-resistant bacteria using cadmium-supplemented media with CdCl2. 16S rRNA characterization identified Vibrio cholerae and Proteus mirabilis as cadmium-resistant bacteria in the collected samples. Subsequently, the cadmium resistance-associated cadA gene was successfully amplified in Vibrio species and Proteus mirabilis, revealing a product size of 623 bp. Further analysis of the identified bacteria included the examination of virulent genes, specifically the tcpA gene (472 bp) associated with cholera and the UreC gene (317 bp) linked to urinary tract infections. To enhance the bioaccumulation of cadmium, the study proposes the potential suppression of virulent gene expression through in-silico gene-editing tools such as CRISPR-Cas9. A total of 27 gRNAs were generated for UreC, with five selected for expression. Similarly, 42 gRNA sequences were generated for tcpA, with eight chosen for expression analysis. The selected gRNAs were integrated into the lentiCRISPR v2 expression vector. This strategic approach aims to facilitate precise gene editing of disease-causing genes (tcpA and UreC) within the bacterial genome. In conclusion, this study underscores the potential utility of Vibrio species and Proteus mirabilis as effective candidates for the removal of cadmium from industrial wastewater, offering insights for future environmental remediation strategies.


Subject(s)
Cholera , Urinary Tract Infections , Vibrio , Humans , Proteus mirabilis/genetics , Cadmium/toxicity , CRISPR-Cas Systems/genetics , RNA, Ribosomal, 16S , Wastewater , RNA, Guide, CRISPR-Cas Systems , Vibrio/genetics
8.
Anal Chem ; 96(11): 4359-4368, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38452345

ABSTRACT

Microorganisms are important sources of bioactive natural products. However, the complexity of microbial metabolites and the low abundance of active compounds render the isolation and purification process laborious and inefficient. During our search for active substances capable of inhibiting the newly discovered highly lethal Vibrio strain vp-HL, we found that the fermentation broth of multiple Bacillus strains exhibited antibacterial activity. However, the substances responsible for the activity remained unclear. Metabolomics, molecular networking (MN), and the Structural similarity Network Annotation Platform for Mass Spectrometry (SNAP-MS) were employed in conjunction with bioactivity screening to predict the antibacterial compounds from Bacillus strains. The analysis of fractions, and their isolation, NMR-based annotation, and bioactivity evaluation of an amicoumacin compound partially confirmed the prediction from these statistical analyses. This work presents the potential of marine Bacillus in producing active substances against Vibrio species. Additionally, it highlighted the significance and feasibility of metabolomics and MN in the dereplication of compounds and the determination of isolation targets.


Subject(s)
Bacillus , Vibrio , Bacillus/metabolism , Metabolomics/methods , Anti-Bacterial Agents/chemistry , Mass Spectrometry
9.
Pol J Vet Sci ; 27(1): 117-125, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38511636

ABSTRACT

Vibrio species are common inhabitants of aquatic environments and have been described in connection with fish and human diseases. Six Vibrio species were isolated from diseased freshwater and ornamental fish in Poland. The strains were identified based on morphological and biochemical characteristics and confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) as V. albensis (n=3) from Gymnocephalus cernua, Sander lucioperca, Paracheirodon innesi, and Xiphophorus hellerii; V. mimicus (n=1) from Xiphophorus maculatus; and V. vulnificus (n=1) from Nematobrycon palmeri. This is the first time that Vibrio species have been isolated and described from ornamental fish in Poland. The isolates were resistant to ampicillin (83.3%), gentamicin (16.6%), ciprofloxacin (16.6%), sulfamethoxazole-trimethoprim (16.6%), and chloramphenicol (16.6%). The multiple antibiotic resistance (MAR) index was 0.00-0.08 for V. albensis, 0.17 for V. mimicus, and 0.33 for V. vulnificus. Our study confirmed the presence of potentially pathogenic Vibrio species in freshwater and ornamental fish. Therefore, further monitoring of the presence of Vibrio species, mainly in ornamental fish, is necessary.


Subject(s)
Vibrio Infections , Vibrio , Humans , Animals , Poland/epidemiology , Vibrio Infections/epidemiology , Vibrio Infections/veterinary , Vibrio/chemistry , Fishes , Fresh Water
10.
Sci Rep ; 14(1): 6093, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38480761

ABSTRACT

C-type cytochromes fulfil many essential roles in both aerobic and anaerobic respiration. Their characterization requires large quantities of protein which can be obtained through heterologous production. Heterologous production of c-type cytochromes in Escherichia coli is hindered since the ccmABCDEFGH genes necessary for incorporation of heme c are only expressed under anaerobic conditions. Different strategies were devised to bypass this obstacle, such as co-expressing the ccm genes from the pEC86 vector. However, co-expression methods restrict the choice of expression host and vector. Here we describe the first use of Vibrio natriegens Vmax X2 for the recombinant production of difficult-to-express redox proteins from the extreme acidophile Acidithiobacillus ferrooxidans CCM4253, including three c-type cytochromes. Co-expression of the ccm genes was not required to produce holo-c-type cytochromes in Vmax X2. E. coli T7 Express only produced holo-c-type cytochromes during co-expression of the ccm genes and was not able to produce the inner membrane cytochrome CycA. Additionally, Vmax X2 cell extracts contained higher portions of recombinant holo-proteins than T7 Express cell extracts. All redox proteins were translocated to the intended cell compartment in both hosts. In conclusion, V. natriegens represents a promising alternative for the production of c-type cytochromes and difficult-to-express redox proteins.


Subject(s)
Cytochromes , Escherichia coli , Vibrio , Escherichia coli/genetics , Escherichia coli/metabolism , Cell Extracts , Oxidation-Reduction , Cytochromes/metabolism , Recombinant Proteins/metabolism
11.
J Immunol ; 212(8): 1319-1333, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38426898

ABSTRACT

N 6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic RNA, was able to mediate circular RNA (circRNA) function in many immune processes. Nevertheless, the functional role of m6A-modified circRNAs in innate immunity of invertebrates remained unclear. In this study, we identified m6A-modified circRNA388 from cultured sea cucumber (Apostichopus japonicus) coelomocytes, which was mainly detected in cytoplasm after Vibrio splendidus infection. A knockdown assay indicated that cytoplasm circRNA388 promoted coelomocyte autophagy and decreased the number of intracellular V. splendidus. Mechanistically, the circRNA388 in the cytoplasm directly sponged miR-2008 to block its interaction with Unc-51-like kinase 1 from A. japonicus (AjULK) and further promoted autophagy to resist V. splendidus infection. More importantly, we found that m6A modification was vital to circRNA388 nuclear export with YTH domain-containing protein 1 from A. japonicus (AjYTHDC1) as the reader. AjYTHDC1 facilitated the nuclear export of m6A-modified circRNA388 via interaction with exportin-1 (chromosomal maintenance 1) from A. japonicus (AjCRM1). Knockdown of AjCRM1 could significantly decrease the content of cytoplasm circRNA388. Overall, our results provide the first evidence that nuclear export of m6A-modified circRNA388 is dependent on the novel AjCRM1 to our knowledge, which was further promoted coelomocyte autophagy by miR-2008/AjULK axis to clear intracellular V. splendidus.


Subject(s)
Adenine/analogs & derivatives , MicroRNAs , Stichopus , Vibrio Infections , Vibrio , Animals , Stichopus/genetics , Active Transport, Cell Nucleus , Immunity, Innate/genetics , Autophagy , MicroRNAs/genetics , MicroRNAs/metabolism
12.
Fish Shellfish Immunol ; 148: 109491, 2024 May.
Article in English | MEDLINE | ID: mdl-38490346

ABSTRACT

As is well known, apoptosis is an important form of immune response and immune regulation, particularly playing a crucial role in combating microbial infections. Apoptosis-inducing factor 1 (AIF-1) is essential for apoptosis to induce chromatin condensation and DNA fragmentation via a caspase-independent pathway. The nuclear translocation of AIF-1 is a key step in apoptosis but the molecular mechanism is still unclear. In this study, the homologous gene of AIF-1, named AjAIF-1, was cloned and identified in Apostichopus japonicus. The mRNA expression of AjAIF-1 was significantly increased by 46.63-fold after Vibrio splendidus challenge. Silencing of AjAIF-1 was found to significantly inhibit coelomocyte apoptosis because the apoptosis rate of coelomocyte decreased by 0.62-fold lower compared with the control group. AjAIF-1 was able to promote coelomocyte apoptosis through nuclear translocation under the V. splendidus challenge. Moreover, AjAIF-1 and Ajimportin ß were mainly co-localized around the nucleus in vivo and silencing Ajimportin ß significantly inhibited the nuclear translocation of AjAIF-1 and suppressed coelomocyte apoptosis by 0.64-fold compared with control. In summary, nuclear translocation of AjAIF-1 will likely mediate coelomocyte apoptosis through an importin ß-dependent pathway in sea cucumber.


Subject(s)
Stichopus , Vibrio , Animals , Stichopus/genetics , beta Karyopherins , Immunity, Innate/genetics , Apoptosis Inducing Factor/genetics , Vibrio/physiology , Apoptosis
13.
Fish Shellfish Immunol ; 148: 109494, 2024 May.
Article in English | MEDLINE | ID: mdl-38499217

ABSTRACT

Vibrio harveyi poses a significant threat to fish and invertebrates in mariculture, resulting in substantial financial repercussions for the aquaculture sector. Valine-glycine repeat protein G (VgrG) is essential for the type VI secretion system's (T6SS) assembly and secretion. VgrG from V. harveyi QT520 was cloned and analyzed in this study. The localization of VgrG was determined by Western blot, which revealed that it was located in the cytoplasm, secreted extracellularly, and attached to the membrane. The effectiveness of two vaccinations against V. harveyi infection-a subunit vaccine (rVgrG) and a DNA vaccine (pCNVgrG) prepared with VgrG was evaluated. The findings indicated that both vaccines provided a degree of protection against V. harveyi challenge. At 4 weeks post-vaccination (p.v.), the rVgrG and pCNVgrG exhibited relative percent survival rates (RPS) of 71.43% and 76.19%, respectively. At 8 weeks p.v., the RPS for rVgrG and pCNVgrG were 68.21% and 72.71%, respectively. While both rVgrG and pCNVgrG elicited serum antibody production, the subunit vaccinated fish demonstrated significantly higher levels of serum anti-VgrG specific antibodies than the DNA vaccine group. The result of qRT-PCR demonstrated that the expression of major histocompatibility complex (MHC) class Iα, tumor necrosis factor-alpha (TNF-α), interferon γ (IFNγ), and cluster of differentiation 4 (CD4) were up-regulated by both rVgrG and pCNVgrG. Fish vaccinated with rVgrG and pCNVgrG exhibited increased activity of acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme. These findings suggest that VgrG from V. harveyi holds potential for application in vaccination.


Subject(s)
Fish Diseases , Vaccines, DNA , Vibrio Infections , Vibrio , Animals , Vibrio Infections/prevention & control , Vibrio Infections/veterinary , Valine , Bacterial Vaccines , Fishes , Fish Diseases/prevention & control
14.
Microbiol Spectr ; 12(4): e0409123, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38441526

ABSTRACT

Fluorescent proteins have revolutionized science since their discovery in 1962. They have enabled imaging experiments to decipher the function of proteins, cells, and organisms, as well as gene regulation. Green fluorescent protein and all its derivatives are now standard tools in cell biology, immunology, molecular biology, and microbiology laboratories around the world. A common feature of these proteins is their dioxygen (O2)-dependent maturation allowing fluorescence, which precludes their use in anoxic contexts. In this work, we report the development and in cellulo characterization of genetic circuits encoding the O2-independent KOFP-7 protein, a flavin-binding fluorescent protein. We have optimized the genetic circuit for high bacterial fluorescence at population and single-cell level, implemented this circuit in various plasmids differing in host range, and quantified their fluorescence under both aerobic and anaerobic conditions. Finally, we showed that KOFP-7-based constructions can be used to produce fluorescing cells of Vibrio diazotrophicus, a facultative anaerobe, demonstrating the usefulness of the genetic circuits for various anaerobic bacteria. These genetic circuits can thus be modified at will, both to solve basic and applied research questions, opening a highway to shed light on the obscure anaerobic world.IMPORTANCEFluorescent proteins are used for decades, and have allowed major discoveries in biology in a wide variety of fields, and are used in environmental as well as clinical contexts. Green fluorescent protein (GFP) and all its derivatives share a common feature: they rely on the presence of dioxygen (O2) for protein maturation and fluorescence. This dependency precludes their use in anoxic environments. Here, we constructed a series of genetic circuits allowing production of KOFP-7, an O2-independant flavin-binding fluorescent protein. We demonstrated that Escherichia coli cells producing KOFP-7 are fluorescent, both at the population and single-cell levels. Importantly, we showed that, unlike cells producing GFP, cells producing KOFP-7 are fluorescent in anoxia. Finally, we demonstrated that Vibrio diazotrophicus NS1, a facultative anaerobe, is fluorescent in the absence of O2 when KOFP-7 is produced. Altogether, the development of new genetic circuits allowing O2-independent fluorescence will open new perspective to study anaerobic processes.


Subject(s)
Bacteria , Flavins , Vibrio , Green Fluorescent Proteins/genetics , Bacteria/genetics , Oxygen
15.
Microb Ecol ; 87(1): 51, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488929

ABSTRACT

In aquatic environments, Vibrio and cyanobacteria establish varying relationships influenced by environmental factors. To investigate their association, this study spanned 5 months at a local shrimp farm, covering the shrimp larvae stocking cycle until harvesting. A total of 32 samples were collected from pond A (n = 6), pond B (n = 6), effluent (n = 10), and influent (n = 10). Vibrio species and cyanobacteria density were observed, and canonical correspondence analysis (CCA) assessed their correlation. CCA revealed a minor correlation (p = 0.847, 0.255, 0.288, and 0.304) between Vibrio and cyanobacteria in pond A, pond B, effluent, and influent water, respectively. Notably, Vibrio showed a stronger correlation with pH (6.14-7.64), while cyanobacteria correlated with pH, salinity (17.4-24 ppt), and temperature (30.8-31.5 °C), with salinity as the most influential factor. This suggests that factors beyond cyanobacteria influence Vibrio survival. Future research could explore species-specific relationships, regional dynamics, and multidimensional landscapes to better understand Vibrio-cyanobacteria connections. Managing water parameters may prove more efficient in controlling vibriosis in shrimp farms than targeting cyanobacterial populations.


Subject(s)
Cyanobacteria , Penaeidae , Vibrio parahaemolyticus , Vibrio , Animals , Ponds , Water , Aquaculture , Penaeidae/microbiology
16.
Antonie Van Leeuwenhoek ; 117(1): 59, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507089

ABSTRACT

The family Vibrionaceae is classified into many clades based on their phylogenetic relationships. The Ponticus clade is one of its clades and consists of four species, Vibrio panuliri, V. ponticus, V. rhodolitus, and V. taketomensis. Two strains, CAIM 703 and CAIM 1902, were isolated from the diseased spotted rose snapper external lesion (Lutjanus guttatus), they were analyzed to determine their taxonomic position, a phylogenetic analysis was performed based on the 16S rRNA sequences proved that the two strains are members of the genus Vibrio and they belong to the Ponticus clade. Then, a phylogenomic analysis was performed with four type strains and four reference strains isolated from marine organisms and aquatic environments. Multilocus Sequence Analysis (MLSA) of 139 single-copy genes showed that CAIM 703 and CAIM 1902 belong to V. panuliri. The 16S rRNA sequence similarity value between CAIM 703 and CAIM 1902 was 99.61%. The Ponticus clade species showed Average Nucleotide Identity (ANI) values between 78 to 80% against the two strains for ANIb, except V. panuliri LBS2T (99% and 100% similarity). Finally, this analysis represents the first phylogenomic analysis of the Ponticus clade where V. panuliri strains are reported from Mexico.


Subject(s)
Vibrio , Animals , Phylogeny , RNA, Ribosomal, 16S/genetics , Fishes , Multilocus Sequence Typing , Aquatic Organisms , Sequence Analysis, DNA , DNA, Bacterial/genetics
17.
Mar Biotechnol (NY) ; 26(2): 230-242, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502428

ABSTRACT

Antibiotics are widely used in aquaculture to treat the bacterial diseases. However, the improper use of antibiotics could lead to environmental pollution and development of resistance. As a safe and eco-friendly alternative, antimicrobial peptides (AMPs) are commonly explored as therapeutic agents. In this study, a mutant strain of Tetraselmis subcordiformis containing AMP NZ2114 was developed and used as an oral drug delivery system to reduce the use of antibiotics in turbot (Scophthalmus maximus) aquaculture. The gut, kidney, and liver immune-related genes and their effects on gut digestion and bacterial communities in turbot fed with NZ2114 were evaluated in an 11-day feeding experiment. The results showed that compared with the group fed with wild-type T. subcordiformis, the group fed with T. subcordiformis transformants containing NZ2114 was revealed with decreased levels of both pro-inflammatory factors (TNF-α and IL-1ß), inhibitory effect on Staphylococcus aureus, Vibrio parahaemolyticus, and Vibrio splendidus demonstrated by the in vitro simulation experiments, and increased richness and diversity of the gut microbiota of turbot. In conclusion, our study provided a novel, beneficial, and low-cost method for controlling bacteria in turbot culture through the oral drug delivery systems.


Subject(s)
Flatfishes , Microalgae , Animals , Flatfishes/immunology , Flatfishes/genetics , Flatfishes/microbiology , Administration, Oral , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Gastrointestinal Microbiome/drug effects , Aquaculture , Chlorophyta , Vibrio/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Liver/metabolism , Liver/drug effects , Staphylococcus aureus/drug effects
18.
Mar Biotechnol (NY) ; 26(2): 338-350, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38451444

ABSTRACT

The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.


Subject(s)
Ciona intestinalis , Vanadium , Animals , Vanadium/metabolism , Ciona intestinalis/metabolism , Ciona intestinalis/microbiology , Pseudoalteromonas/metabolism , Vibrio/metabolism , Hydrogen-Ion Concentration , Intestines/microbiology , Culture Media/chemistry , RNA, Ribosomal, 16S/genetics
19.
Microb Pathog ; 190: 106611, 2024 May.
Article in English | MEDLINE | ID: mdl-38467165

ABSTRACT

Vibrio anguillarum is an important fish pathogen in mariculture, which can infect fish with great economic losses. In this study, a Vibrio anguillarum isolated from Sebastes schlegelii was named VA1 and was identified and characterized from aspects of morphology, physiological and biochemical characteristics, 16SRNA, virulence genes, drug sensitivity, and extracellular enzyme activity. At the same time, The VA1 was investigated at the genomic level. The results showed that a Gram-negative was isolated from the diseased fish. The VA1 was characterized with uneven surface and visible flagella wrapped in a sheath and microbubble structures. The VA1 was identified as Vibrio anguillarum based on the 16S RNA sequence and physiological and biochemical characteristics. The VA1 carried most of the virulence genes (24/29) and was resistant to penicillin, oxacillin, ampicillin, cefradine, neomycin, pipemidic acid, ofloxacin, and norfloxacin. The pathogenicity of the isolated strain was confirmed by an experimental analysis, and its LD50 was 6.43 × 106 CFU/ml. The VA1 had the ability to secrete gelatinase, protease, and amylase, and it had α-hemolysis. The whole genome size of the VA1 was 4232328bp and the G + C content was 44.95 %, consisting of two circular chromosomes, Chromosome1 and Chromosome2, with no plasmid. There were 1006 predicted protein coding sequences (CDSs). A total of 526 genes were predicted as virulence-related genes which could be classified as type IV pili, flagella, hemolysin, siderophore, and type VI secretion system. Virulence genes and correlation data were supported with the histopathological examination of the affected organs and tissues. 194 genes were predicted as antibiotic resistance genes, including fluoroquinolone antibiotic, aminoglycoside antibiotic, and beta-lactam resistant genes, which agreed with the results of the above drug sensitivity, indicating VA1 to be a multidrug-resistant bacterium. This study provided a theoretical basis for a better understanding of pathogenicity and antibiotic resistance, which might contribute to the prevention of V. anguillarum in the future.


Subject(s)
Anti-Bacterial Agents , Fish Diseases , Genome, Bacterial , Phylogeny , Vibrio Infections , Vibrio , Virulence Factors , Whole Genome Sequencing , Vibrio/genetics , Vibrio/pathogenicity , Vibrio/isolation & purification , Vibrio/classification , Vibrio/drug effects , Fish Diseases/microbiology , Animals , Virulence Factors/genetics , Vibrio Infections/microbiology , Vibrio Infections/veterinary , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Microbial Sensitivity Tests , Virulence/genetics , Fishes/microbiology , Base Composition
20.
Appl Environ Microbiol ; 90(4): e0005824, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38470179

ABSTRACT

Alternaria alternata FB1 is a marine fungus identified as a candidate for plastic degradation in our previous study. This fungus has been recently shown to produce secondary metabolites with significant antimicrobial activity against various pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and the notorious aquaculture pathogen Vibrio anguillarum. The antibacterial compounds were purified and identified as alternariol (AOH) and its derivative, alternariol monomethyl ether (AME). We found that AOH and AME primarily inhibited pathogenic bacteria (MRSA or V. anguillarum) by disordering cell division and some other key physiological and biochemical processes. We further demonstrated that AOH could effectively inhibit the unwinding activity of MRSA topoisomerases, which are closely related to cell division and are the potential action target of AOH. The antibacterial activities of AOH and AME were verified by using zebrafish as the in vivo model. Notably, AOH and AME did not significantly affect the viability of normal human liver cells at concentrations that effectively inhibited MRSA or V. anguillarum. Finally, we developed the genetic operation system of A. alternata FB1 and blocked the biosynthesis of AME by knocking out omtI (encoding an O-methyl transferase), which facilitated A. alternata FB1 to only produce AOH. The development of this system in the marine fungus will accelerate the discovery of novel natural products and further bioactivity study.IMPORTANCEMore and more scientific reports indicate that alternariol (AOH) and its derivative alternariol monomethyl ether (AME) exhibit antibacterial activities. However, limited exploration of their detailed antibacterial mechanisms has been performed. In the present study, the antibacterial mechanisms of AOH and AME produced by the marine fungus Alternaria alternata FB1 were disclosed in vitro and in vivo. Given their low toxicity on the normal human liver cell line under the concentrations exhibiting significant antibacterial activity against different pathogens, AOH and AME are proposed to be good candidates for developing promising antibiotics against methicillin-resistant Staphylococcus aureus and Vibrio anguillarum. We also succeeded in blocking the biosynthesis of AME, which facilitated us to easily obtain pure AOH. Moreover, based on our previous results, A. alternata FB1 was shown to enable polyethylene degradation.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Mycotoxins , Vibrio , Animals , Humans , Zebrafish , Alternaria , Lactones/pharmacology , Lactones/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Mycotoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...